Limits of I/O Based Ransomware Detection: An Imitation Based Attack

<u>Chijin Zhou</u>¹, Lihua Guo¹, Yiwei Hou¹, Zhenya Ma¹, Quan Zhang¹, Mingzhe Wang¹, Zhe Liu², and Yu Jiang¹

TSING TO THE RESILVA

¹Tsinghua University, Beijing, China ²NUAA, Nanjing, China

I/O Based Ransomware Detection

Ransomware Lifecycle

I/O Based Ransomware Detection

Assumption: ransomware behaves <u>very differently</u> from benign programs regarding observed I/O detection patterns.

Research question: Can a ransomware program evade the existing detection techniques by <u>imitating</u> the behaviors of benign programs?

- Imitation based attack
 - Goal: help existing detectors realize the limits of their feature engineering
 - Idea: imitate behaviors of benign programs to disguise its encryption tasks
 - Approach
 - 1. <u>Learn</u> behavior patterns from a benign program
 - 2. Orchestrate child processes to perform encryption tasks

- Offline Preparation Phase
 - Running benign programs to collect behavior logs
 - Extracting behavior template from the logs

Time	Proc	Operation	File	Extra Info
T ₀ + 0	P1	QUERY INFO	F1	Null
T ₀ + 12	P1	QUERY INFO	F2	Null
T ₀ + 14	P2	QUERY INFO	F2	Null
T₀ + 20	P2	OPEN	F2	mode: ALL_ACCESS
T ₀ + 25	P2	READ	F2	buff len: 4096
T₀ + 30	P2	WRITE	F2	buff len: 1024 entropy: 5.67

- Online Attack Phase
 - Scheduling based on behavior template
 - Execution based on scheduling results

Evaluation – Attack Effectiveness

✓: attack successfully; X: be detected; *: be detected as soon as it started.

Despite the effectiveness of these detection tools in identifying most forms of ransomware, Animagus still evades these tools.

Evaluation – Attack Throughput

	200 files	400 files	600 files	800 files	1000 files
$ANIMAGUS^{FireFox}$	56s	112s	193s	254s	320s
$ANIMAGUS^{MS\ Edge}$	226s	437s	644s	853s	1068s
$ANIMAGUS^{Chrome}$	273s	501s	731s	1011s	1279s
$ANIMAGUS^{WPS\ Office}$	81s	110s	233s	323s	330s
$ANIMAGUS^{MS\ Office}$	134s	234s	334s	397s	512s
$ANIMAGUS^{7Zip}$	63s	125s	178s	262s	295s
$ANIMAGUS^{WinRAR}$	54s	106s	159s	211s	265s
$Animagus^{Golang-go}$	59s	117s	173s	232s	289s
$ANIMAGUS^{Rustc}$	63s	125s	186s	249s	306s
${ m ANIMAGUS}^{Visual\ Studio}$	89s	182s	272s	350s	431s

The encryption time of Animagus is not much longer than that of traditional ransomware, but the attack success rate is much higher.

Evaluation – Robustness Against Defense

Detection Strategies

- File-type based detector
- Scanning based detector
- Dummy-access based detector

Simple detection strategies cannot effectively detect Animagus without a considerable FPR.

	TPR	FPR	F1-score
file-type based detector	0.900	0.499	0.751
static scanning based detector	1.000	0.338	0.856
temporal scanning based detector	0.800	0.051	0.865
dummy-access based detector	0.600	0.966	0.468

Potential Benefits

- Prototype is released in https://github.com/ChijinZ/Animagus.
- Vendors can collect numerous kinds of Animagus behavior logs to fine-tune the heuristics of their detectors.

Summary

Goal: reveal the limits of ransomware detectors

Evaluation: effectively evade existing detectors

Method: learn behaviors from benign programs

Benefit: leverage the tool to improve their detectors

