PolylJuice: Detecting Mis-compilation Bugs in Tensor
Compilers with Equality Saturation Based Rewriting

Chijin Zhou', Bingzhou Qian*, Gwihwan Go",
Quan Zhang', Shanshan Li¥, and Yu Jiang"

TTsinghua University
INational University of Defense Technology

DL models are being compiled

DL Frameworks
£) ONNX © Caffe2 PYTHRCH "I TensorFlow

/

22225 DL model

(=

X XXX

\

,,@ @{? DL Compiler

Compiled Code

> I Edge Devices

Optimized Inference Engines

NVIDIA TensorRT Cloud is a developer service
for compiling and creating optimized inference
engines for ONNX. Developers can use their
own model and choose the target RTX GPU.
Then TensorRT Cloud builds the optimized
inference engine, which can be downloaded
and integrated into an application. TensorRT
Cloud also provides prehuilt, optimized engines
for popular LLMs on RTX GPUs.

Inductor CPU backend debugging
and profiling

Overview

PyTorch 2.0 introduced the compilation API called This new feature

offers a significant speedup over eager mode execution through graph-level optimization

powered by the default Inductor backend

This tutorial is intended to provide an in-depth introduction on the debugging and
performance profiling on Inductor CPU backend by delving into the intricacies of

torch.compile .

Meanwhile, you may also find related tutorials about torch.compile around basic usage,
comprehensive troubleshooting and GPU-specific knowledge like GPU performance

profiling.

XLA (Accelerated Linear Algebra) is an open-source compiler for machine
learning. The XLA compiler takes models from popular frameworks such as
PyTorch, TensorFlow, and JAX, and optimizes the models for high-
performance execution across different hardware platforms including GPUs,
CPUs, and ML accelerators. For example, in a BERT MLPerf submission, using
XLA with 8 Volta V100 GPUs achieved a ~7x performance improvement and
~bx batch-size improvement compared to the same GPUs without XLA.

Mis-compilation bugs in tensor compilers

[ARITH][BUGFIX] Fix a bug of iter map
floormod(x,2) simplify #14571
junrushao merged 1 commit into apache:main from tqchen:arith-fix

LY Conversation 13 -0 Commits 1 Fl Checks o Files chan

@ tqchen commented on Apr 10, 2023 Member =~ <=« Reviewt
S . . . | & jun

This PR fixes a previous bug introduced in itermap detection.
Specifically, y - (x % 2) were simplified to y + (x % 2) - 1. Which Assigne
is wrong. The working rule isy + ((x + 1) % 2) - 1, but that rule No one

will change the base iterator which is not desirable here.

® Labels
None ye

https://github.com/apache/tvm/pull/14571

y — (x%?2) y

y+ (x%2) — 1 y—1

Incorrect Rewrite

https://github.com/apache/tvm/pull/14571

Mis-compilation bugs in tensor compilers

m Lunderberg commented on Apr 11, 2023 Contributor

Thank you for finding the error there. The rewrite were initially
introduced to allow simplification of cases of (x+const)%2
introduced by the InjectSoftwarePipeline pass, with
equivalent changes made for petectItermap so that it could
handle the simplified expressions.

| agree that the petectitermap changes are definitely incorrect,
and am going through the rewrite rules introduced in that PR
to check whether they had a similar error, or whether the error
was solely in the Itermapsimplify changes.

©

.9 How do we automatically detect such non-crash bugs?

The basic idea of PolyJuice

Tensor Program 1 @ compiled > Compiled Model 1
®equiv.allent Tensor
rewrltlng Compiler

Tensor Program 2 > Compiled Model 2

@ compiled

The basic idea of PolyJuice

Tensor Program 1 @ Complled > Compiled Model] 1 e
A v
equivalent Tensor E inconsistent
D reuriting ‘ Compiler Same v' nputs @ outputs =)
Tensor Program 2 & comnied > Compiled Model 2 et

The same as Equivalence Modulo Inputs [PLDI'14]

-?

How do we rewrite the tensor program?

Goal of Rewriting

@ compiled® © ?

Tensor Program 1

®equivalent Tensor
rewriting Compiler

Tensor Program 2

@ compiledo O 6

The two equivalent programs should undergo
passes that are as different as possible

Design

Approach:

 leverage equality saturation to rewrite a computation graph

Goal: construct two equivalent programs with highly different dataflow

« find the simplest graph and the most complex graph for testing

Randomly-Generated Graph

84.1

Graph Conversion

1o —
, 01 = mul(I2, add(I1, C1))

1

1

1

: 02 = other(transpose(:

Y : add(I1,C1))) |
-1.) ! 1

:Comp,out = output(01, 02}

Computation Expression

§4.2
Computation

Expression Rewriting

Representative Equivalent Graphs

§4.3
Complexity Aware

Graph Extraction

§4.4

Testcase Generation

same inputs

e

i Inconsistent

Equality Saturation

custom i@equallty saturation engine | { cost function
language ; AN
i A—"'i ------------------
graph >:(:°§ —> e-graph ||
I . graph with | .
a set of __ _ -.--_l_c_J__’_Y?f’_JE_E?_S_‘_t___:
rewrite rules

(a) The e-graph (b) After applying rewrite (c) After applying rewrite
of (a=2)/2. rulex *2 — x < 1. rule (x xy)/z — x = (y/z).

Implementation

custom

] @ design an IR to accept !
i | arbitrary computation graphs i

language

@ equality saturation engine

graph

a set of

>(°§¢—> e-graph -

-
,/

- -~

SS

N

’

-’
- -
- S~o -
- i

~
~~N
~
~

rewrite rules

. graph with

lowest cost |

Implementation

custom @ equality saturation engine | ¢ cost function)
language
*’,- -------------
po-====-- -4 graph >%¢—> e-graph ~ g
A SE— T N R . graph with |
 sot of lowest cost |
rewrite rules

E_- ® leverage NNSmith [ASPLOS’23] |
] i to generate the original graph]

Implementation

_r® propose several arithmetic and

custom
language

graph

@ equality saturation engine

a set of
rewrite rules

>$§¢—>

e-graph

- ~o
~

- S -
- ~ -
- o

~
~~N
~
~

structural rewrite rules

graph with
lowest cost

11

Implementation

custom @ equality saturation engine | ¢ cost function \:
|anguage \\ //
*”— -------------
graph)@‘aﬁé e'graph ~~. H
~~~~~ . graph with |
—— A lowest cost |
rewrite rules ’

.@ use Egg [POPL’21] for
' equallty saturation



Evaluation

highlight

* PolydJuice found 84 non-crash bugs in 7

tensor compilers, with 49 confirmed.

« Compared with naive rewriting, our
rewriting can improve the difference of
compilation paths by 112%-150%.

« PolydJuice only introduces 0.11%-1.53%

runtime overhead compared to NNSmith

Reported Confirmed Fixed
Torch Inductor 12 9 9
TensorRT 10 8 7
ONNXRuntime 11 0 (0]
TVM 7 0 0
XLA 25 13 (0]
Hidet 4 4 4
EinNet 15 15 0
Total 84 49 20
the simplified graph
optimization pass
the complex graph
plll| ’I_‘IVIHHH 111 R R
optimization pass
4 .. . .
Compiler graph | original gfaph expression grap}} comp1.ler
node generation rewriting extraction execution
5 26.76ms 0.33ms 1.16ms 1367.85ms
TVM 10 41.72ms 0.33ms 1.63ms 1865.97ms
15 53.04ms 0.35ms 1.64ms 2059.14ms
5 22.35ms 0.27ms 1.23ms 74.09ms
XLA 10 35.92ms 0.26ms 1.23ms 97.24ms
15 87.00ms 0.26ms 1.25ms 121.11ms

13



Interesting Cases

def _init__ (self):
super().__init_ ()
self.const = const(

|

|

|

|

|

| def forward(self, x): -Compiled - -
: y = self.const

[ add = torch.add(x, y)
: neg = torch.neg(add)
: out = neg.argmin(4)

|

|

Out :E:Em}:ﬁta_ﬁt_m] return out :_ “Tensor |

TVM 0.12.0 e N . _Program _, Same Input,
L] L] '_ __________________ -
Rewriting VY iclass Modell(torch.nn.Module): Inconsistent Results
\/ constl) def _init_(self):
super().__init_ ()
self.const = const0

A e e e e e e — — ——— —
I

P

intB4[18, i'i!’i'.' 5011 int64{18,[1, 1, 1. 60)

transpose transpose
dim{=1, dim1=0 dimd=1, dim1=0

A7 18,1, 1, 60)
def forward(self, x):

y = self.const

X = x.transpose(1, 0)

y = y.transpose(1, ()

add = torch.add(x, y)

add = add.transpose(1, 0)
neg = torch.neg(add)

out = neg.argmin(4)

" ‘Computation, return out " Tensor |
ot | empn | L L _Program _|

e B

-Compiled - -

transpose

dim0=1, dim1=0

e s Tttt R

14



Interesting Cases

0 int64[3,1,1,1,1]

| Tensor Information
Lcon:t[): int64[3,1,1,1,60]

Eclass ModelO(torch.nn.Module):

| def __init__(self):
super().__init_ ()

| def forward(self, x):
add = torch.add(x, const0)
Fusion { neg = torch.neg(add)
TVM 0.12.0 . Largmin = neg.argmin(4)

return argmin

_____________________________________________________

i: fused add negative argmin
ifor .. in T.parallel(3):
! min_arg =-1
min_val = T.int64().MAX
for index in range(60):
min_arg = if(min_val < T.int64(0]) -
inputO[index] - inputlfindex]) {
min_arg
}else { index }
min_val = if{...) { ... }else { ... }

by TVM

{Tensor Information ]
®:int64[3,1,1,1,1]
constD: int64[3,1,1,1,60)

class Modell(torch.nn.Module):
. def _init__(self):
' super().__init_ ()

. def forward(self, x):

. trans_0 = x.transpose(1, 0)
trans 1 = constO.transpose(1, 0)
add = torch.add(trans_0, trans_1) !
add_trans = add.transpose(1, 0)
neg = torch.neg(add trans), !
argmin = neg.argmin(4) }Fumn
return argmin

i# fused_negative_argmin
ifor ... in T.parallel(3):

! min_arg = -1
i min_val = T.int64(). MAX
for index in range(60):

min_arg = if(min_val + input0[index] < T.int64(0)) {

ominarg &S jneger
} else { index } @i Overflow
min_val = if(...) { ... } else { ... } § 15



Interesting Cases

PyTorch 2.1.0

[Tensor Information |
3 uint8[1]
const0: uint8[40,30]
constl: uint8[30]

iclass Model0(torch.nn.Module): |
i def __init__(self): :
¢ super().__init_ ()

def forward(self, x):
i reshape = const0. reshape(so)
neg = torch.neg(constl)
add = torch.add(reshape, x) :
mul = torch.mul(add, neg)
sum = mul.sum(0) Qﬂ
return sum

Converted to C++ code

[ Tensor Information |
x: uint8[1]
const0: uint8[40,30]
constl: uint8[30]

class Model1(torch.nn.Module): |
| def _init__(self):
i super().__init_ ()

def forward(self, x):
reshape = const0. reshape(SO)
neg = torch.neg(constl)
add = torch.add(reshape, x)
mul = torch.mul(neg, add)
sum = mul.sum(0) %ﬂ
return sum

by Torch Inductor

iconst unsigned char* in_ptr0,in_ptrl,in_ptr2 = ...;

iH long i0: range(0,30); long i1: range(0,40);

iauto tmp0 = in_ptrO[i0 + (30L*1)];

iauto tmp2 = in_ptrl[i0];

iauto tmp3 = in_ptr2[0L]; :
iauto tmp1l = decltype(tmp0)(-tmp0); // tmpl is "char"
%auto tmp4 = tmp2 + tmp3; // tmp4 is "int" :
iauto tmp5 = decltype(tmpl)(tmpl * tm p4);-:%‘l]
iauto tmp6 static_cast<long>(tmp5);

iconst unsigned char* in_ptr0,in_ptrl,in_ptr2 = ..,;

EH long i0: range(0,30); long il: range(0,40);

;auto tmp0 = in_ptro[i0 + (30L*i1)];

iauto tmp2 = in_ptrl[i0];

Eauto tmp3 = in_ptr2[0L]; .
iauto tmpl = decltype(tmp0)(-tmp0); // tmp1l is "char"
éauto tmp4 = tmp2 + tmp3; // tmp4 is "int" :
Eauto tmp5 = decltype(tmp4)(tmp4 * tmp1); -:%!]
‘auto tmp6 = static_cast<long>(tmp5);

Inconsistent because of type casting for tmp5 16



Summary

Goal: detecting mis-compilation bugs  Problem: how to effectively rewrite programs

The basic idea of PolyJuice Naive Rewriting may not work

Tensor Program 1

equivalent
rewriting

Tensor Program 2

The same as Equivalence Modulo Inputs [PLDI'14]

Compi m tensor compilers usually 0 naive rewriting will cause
ompiled Model 1 ! have low throughput  similar tensor programs

A v
Tensor : inconsistent
same inputs )
comer O o @ @
v A

Compiled Mode]| 2 et

@ compiled

®@compiled
each test case should % the programs will undergo
be effective similar compilation paths

.’? How do we rewrite the program?

Method: equality saturation for rewriting  Evaluation: able to find real-world bugs

Design of PolyJuice Evaluation

+ Goal: construct two equivalent programs with highly different dataflow highlight

+ Approach: + PolyJuice found 84 non-crash bugs in 7
« leverage equality saturation to rewrite the original computation graph tensor compilers, with 49 confirmed.

« find the simplest graph and the most complex graph for testing

+ Compared with naive rewriting, our
rewriting can improve the difference of
compilation paths by 112%-150%.

« PolyJuice only introduces 0.11%-1.53% -

runtime overhead compared to NNSmith

Prototype: https://github.com/ChijinZ/PolyJuice-Fuzzer
Special thanks:

« NNSmith’s authors, for the well-structured and reusable code

« Egg community, for the well-developed tool and responsive community 17



https://github.com/ChijinZ/PolyJuice-Fuzzer

	PolyJuice: Detecting Mis-compilation Bugs in Tensor Compilers with Equality Saturation Based Rewriting
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18

