
Towards Better Semantics Exploration
for Browser Fuzzing

Chijin Zhou1, Quan Zhang1, Lihua Guo1, Mingzhe Wang1, Yu
Jiang1, Qing Liao2, Zhiyong Wu3, Shanshan Li3 and Bin Gu4

1Tsinghua University, China
2Harbin Institute of Technology, China
3National University of Defense Technology, China
4Beijing Institute of Control Engineering, China

Browser Fuzzing: A Decade of Research

cross_fuzz

2011

Basic Fuzzer Syntax-Aware Context-Aware Semantics-Aware

Dharma

2015

Domato

2017

Favocado

2021

FreeDom

2020

Goal of fuzzers: Generate html

files that explore browser states

and, with luck, trigger bugs.User Browser Malicious Page

<html>
<style>

…
</style>
<script>

… …
</script>
<body>

…
</body>
</html>

2022

Minerva

(by lcamtuf) (by Mozilla) (by Google) (CCS’20) (NDSS’21) (ESEC/FSE’22)

If a browser is vulnerable …

privacy leakage/remote code execution

How did browser fuzzers work?

select symbols and

expand nonterminals

using production rules

(semi-)handwritten grammar

css grammar html grammar js grammar

Derivation Trees

css tree html tree js tree

Instantiated Code

instantiate

How did browser fuzzers work?

Derivation TreeInstantiated Code

select symbols and

expand nonterminals

using production rules

(semi-)handwritten grammar

css grammar html grammar js grammar

Derivation Trees

css tree html tree js tree

Instantiated Code

instantiate

How did browser fuzzers work?

Derivation TreeInstantiated Code

select symbols and

expand nonterminals

using production rules

(semi-)handwritten grammar

css grammar html grammar js grammar

Derivation Trees

css tree html tree js tree

Instantiated Code

instantiate

How did browser fuzzers work?

Derivation TreeInstantiated Code

select symbols and

expand nonterminals

using production rules

(semi-)handwritten grammar

css grammar html grammar js grammar

Derivation Trees

css tree html tree js tree

Instantiated Code

instantiate

How did browser fuzzers work?

Derivation TreeInstantiated Code

select symbols and

expand nonterminals

using production rules

(semi-)handwritten grammar

css grammar html grammar js grammar

Derivation Trees

css tree html tree js tree

Instantiated Code

instantiate

A good browser fuzzer should be able to …

explore diverse

semantics of browsers

generate semantically-

correct testcases

explore diverse

semantics of browsers

generate semantically-

correct testcases

Suppose this area presents the input space of a browser ...

semantically valid space

invalid space

A good browser fuzzer should be able to …

Ideally, a good fuzzer should generate testcases like …

semantically valid space

invalid space

valid testcase

explore diverse

semantics of browsers

generate semantically-

correct testcases

A good browser fuzzer should be able to …

However, existing fuzzers generate testcases like …

semantically valid space

invalid space

valid testcase

invalid testcase

explore diverse

semantics of browsers

generate semantically-

correct testcases

Pitfalls: handwritten grammars limit the semantics exploration of

fuzzers, and still cannot ensure semantic correctness

A good browser fuzzer should be able to …

Towards Better Semantics Exploration for Browser Fuzzing

• Goal: automatically generate quality grammars to improve browser fuzzing

• workflow:

• extract a preliminary grammar from W3C standards

• refine the grammar based on the semantic feedback of browser executions

Fuzzing with handwritten grammar Fuzzing with W3C-augmented grammar Fuzzing with refined grammar

Design Overview

Design Overview

Design Overview

Grammar Extraction

Context-Free Grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆)

𝑁: a set of nonterminals

𝑇: a set of terminals disjoin from 𝑁
𝑃: a finite relation in 𝑁 × (𝑁 ∪ 𝑇)𝑘, each

relation 𝑝 in the form of 𝛼 → 𝛽1𝛽2⋯𝛽𝑘
𝑆: a designed start symbol

Grammar Extraction

Requirements of the extracted CFG …

production rules cover diverse semantics

every expansion is not non-terminating

every nonterminal can be expanded to a

terminal-only expression

𝑐𝑠𝑠𝑝𝑟𝑜𝑝 → 𝑓𝑜𝑛𝑡𝑝𝑟𝑜𝑝
→ 𝑎𝑙𝑖𝑔𝑛𝑝𝑟𝑜𝑝
→ …

As many semantics as possible

𝜶 → 𝛽1𝛽2 𝜸 𝛽3…

𝜸 → 𝛽4 𝝁 𝛽5…

𝝁 → 𝛽6 𝜶…

No infinite loops in expansions

Expansions to terminal-only

expressions

𝑛_𝑡𝑒𝑟𝑚 → 𝑛_𝑡𝑒𝑟𝑚 …
→ ⋯
→ 𝑡𝑒𝑟𝑚1𝑡𝑒𝑟𝑚2…𝑡𝑒𝑟𝑚𝑛

Grammar Extraction

Requirements of the extracted CFG …

production rules cover diverse semantics

every expansion is not non-terminating

every nonterminal can be expanded to a

terminal-only expression

Heuristic strategies to convert

W3C standards to production rules

Recursively expanding all nonterminals

to detect only-loop expansions

Static dataflow analysis on browser

source code to find proper terminals

Semantics Inference

Context-Free Grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆)

Production-Context Sensitive Grammar 𝐺′ = (ഥ𝒩, ത𝒯, ത𝒫, ҧ𝒮)

ഥ𝒩: identical to 𝑁
ത𝒯: identical to 𝑇
ത𝒫: each relation 𝑝 in the form of [ℂ𝑝]𝛼 → 𝛽1𝛽2⋯𝛽𝑘
ҧ𝒮: identical to 𝑆

ℂ𝑝 is a context-checking function for 𝑝, ℂ𝑝(𝑐𝑡𝑥) =

true likely semantic correct

false unlikely semantic correct

// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Semantics Inference

Example

// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Semantics Inference

Example

PCSG

: I would like to know if 𝑝𝑏3 is a right choice under this context

Fuzzer

: ℂ𝑝𝑏3 𝑝𝑏1, 𝑝𝑏2 returns false, so it is likely to cause a semantic error

// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Semantics Inference

Example

// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Fact: the generated testcase will triggers
a semantic error if the fuzzer selects 𝑝𝑏3

Semantics Inference

How can we know ℂ𝑝 for each production rule 𝑝?

- construct a tree-based data structure based on browsers’ feedback

Input Generation

start symbol

Derivation
Tree

CTX =
{}

Input Generation

nonterminal

start symbol

terminal
Derivation

Tree

𝒑𝟏

CTX =
{}

randomly select a rule

ℂ𝑝1([]) == 𝑡𝑟𝑢𝑒?

Input Generation

nonterminal

terminalnonterminal

start symbol

terminal
Derivation

Tree

𝑝1

𝒑𝟐

CTX =
{𝑝1}

randomly select a rule

ℂ𝑝2 𝑝1 == 𝑡𝑟𝑢𝑒?

Input Generation

nonterminal

terminalnonterminal

terminal

start symbol

terminal

terminal

Derivation
Tree

𝑝1

𝑝2

𝒑𝟑

CTX =
{𝑝1, 𝑝2}

randomly select a rule

ℂ𝑝3[𝑝1, 𝑝2] == 𝑡𝑟𝑢𝑒?

Input Generation

nonterminal

terminalnonterminal

terminal

start symbol

terminal

terminal

… … … …

Derivation
Tree

Testcase

𝑝1

𝑝2

𝑝3

CTX =
{𝑝1, 𝑝2, 𝑝3}

Evaluation

• found 62 real-world bugs in Safari,

Chrome, and Firefox, out of which 40

were confirmed with 10 CVEs

• Compared to existing browser fuzzers

• 6.03% - 277.80% improvement in

branch coverage

• 3.56% - 160.71% improvement in

semantics correctness rate

• Introduced roughly 3.57% overhead

during code generation

highlight

Summary Artifacts: https://zenodo.org/records/8328742
Prototype: https://github.com/ChijinZ/SaGe-Browser-Fuzzer

Goal: better semantics exploration Method: learn grammars from specs and source code

Insight: infer semantics for production rules Evaluation: perform well and can find real-world bugs

This research is sponsored in part by Deng Feng Fund

https://zenodo.org/records/8328742
https://github.com/ChijinZ/SaGe-Browser-Fuzzer

