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Browser Fuzzing: A Decade of Research
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Goal of fuzzers: Generate html 

files that explore browser states

and, with luck, trigger bugs.User Browser Malicious Page
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If a browser is vulnerable …

privacy leakage/remote code execution



How did browser fuzzers work?
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A good browser fuzzer should be able to …

explore diverse

semantics of browsers 

generate semantically-

correct testcases



explore diverse
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Ideally, a good fuzzer should generate testcases like …
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However, existing fuzzers generate testcases like …

semantically valid space

invalid space

valid testcase

invalid testcase

explore diverse

semantics of browsers 

generate semantically-

correct testcases

Pitfalls: handwritten grammars limit the semantics exploration of 

fuzzers, and still cannot ensure semantic correctness

A good browser fuzzer should be able to …



Towards Better Semantics Exploration for Browser Fuzzing

• Goal: automatically generate quality grammars to improve browser fuzzing

• workflow:

• extract a preliminary grammar from W3C standards

• refine the grammar based on the semantic feedback of browser executions

Fuzzing with handwritten grammar Fuzzing with W3C-augmented grammar Fuzzing with refined grammar
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Grammar Extraction

Context-Free Grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆)

𝑁: a set of nonterminals

𝑇: a set of terminals disjoin from 𝑁
𝑃: a finite relation in 𝑁 × (𝑁 ∪ 𝑇)𝑘, each 

relation 𝑝 in the form of 𝛼 → 𝛽1𝛽2⋯𝛽𝑘
𝑆: a designed start symbol



Grammar Extraction

Requirements of the extracted CFG …

production rules cover diverse semantics

every expansion is not non-terminating

every nonterminal can be expanded to a 

terminal-only expression

𝑐𝑠𝑠𝑝𝑟𝑜𝑝 → 𝑓𝑜𝑛𝑡𝑝𝑟𝑜𝑝
→ 𝑎𝑙𝑖𝑔𝑛𝑝𝑟𝑜𝑝
→ …

As many semantics as possible

𝜶 → 𝛽1𝛽2 𝜸 𝛽3…

𝜸 → 𝛽4 𝝁 𝛽5…

𝝁 → 𝛽6 𝜶…

No infinite loops in expansions

Expansions to terminal-only 

expressions

𝑛_𝑡𝑒𝑟𝑚 → 𝑛_𝑡𝑒𝑟𝑚 …
→ ⋯
→ 𝑡𝑒𝑟𝑚1𝑡𝑒𝑟𝑚2…𝑡𝑒𝑟𝑚𝑛



Grammar Extraction

Requirements of the extracted CFG …

production rules cover diverse semantics

every expansion is not non-terminating

every nonterminal can be expanded to a 

terminal-only expression

Heuristic strategies to convert 

W3C standards to production rules

Recursively expanding all nonterminals

to detect only-loop expansions

Static dataflow analysis on browser 

source code to find proper terminals



Semantics Inference

Context-Free Grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆)

Production-Context Sensitive Grammar 𝐺′ = ( ഥ𝒩, ത𝒯, ത𝒫, ҧ𝒮)

ഥ𝒩: identical to 𝑁
ത𝒯: identical to 𝑇
ത𝒫: each relation 𝑝 in the form of [ℂ𝑝]𝛼 → 𝛽1𝛽2⋯𝛽𝑘
ҧ𝒮: identical to 𝑆

ℂ𝑝 is a context-checking function for 𝑝, ℂ𝑝(𝑐𝑡𝑥) =

true   likely semantic correct

false  unlikely semantic correct



// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Semantics Inference

Example



// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Semantics Inference

Example

PCSG

: I would like to know if 𝑝𝑏3 is a right choice under this context

Fuzzer

: ℂ𝑝𝑏3 𝑝𝑏1, 𝑝𝑏2 returns false, so it is likely to cause a semantic error



// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Semantics Inference

Example

// v3 is a normal SVGTitleElement element

v3=doc.createElementNS("…", "title");

// v4 is null because v3 is the outermost

v4=v3.ownerSVGElement();

// misuse error because v4 is null

v5=v4.x;

Fact: the generated testcase will triggers 
a semantic error if the fuzzer selects 𝑝𝑏3



Semantics Inference

How can we know ℂ𝑝 for each production rule 𝑝? 

- construct a tree-based data structure based on browsers’ feedback  
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Input Generation

nonterminal

terminalnonterminal

start symbol

terminal
Derivation 

Tree

𝑝1

𝒑𝟐

CTX = 
{𝑝1} 

randomly select a rule

ℂ𝑝2 𝑝1 == 𝑡𝑟𝑢𝑒?



Input Generation

nonterminal

terminalnonterminal

terminal

start symbol

terminal

terminal

Derivation 
Tree

𝑝1

𝑝2

𝒑𝟑

CTX = 
{𝑝1, 𝑝2} 

randomly select a rule

ℂ𝑝3[𝑝1, 𝑝2] == 𝑡𝑟𝑢𝑒?



Input Generation

nonterminal

terminalnonterminal

terminal

start symbol

terminal

terminal

… … … …

Derivation 
Tree

Testcase

𝑝1

𝑝2

𝑝3

CTX = 
{𝑝1, 𝑝2, 𝑝3} 



Evaluation

• found 62 real-world bugs in Safari,

Chrome, and Firefox, out of which 40

were confirmed with 10 CVEs

• Compared to existing browser fuzzers

• 6.03% - 277.80% improvement in 

branch coverage

• 3.56% - 160.71% improvement in

semantics correctness rate

• Introduced roughly 3.57% overhead 

during code generation

highlight



Summary Artifacts: https://zenodo.org/records/8328742
Prototype: https://github.com/ChijinZ/SaGe-Browser-Fuzzer

Goal: better semantics exploration Method: learn grammars from specs and source code

Insight: infer semantics for production rules Evaluation: perform well and can find real-world bugs

This research is sponsored in part by Deng Feng Fund

https://zenodo.org/records/8328742
https://github.com/ChijinZ/SaGe-Browser-Fuzzer

