
Minerva: Browser API Fuzzing with 
Dynamic Mod-Ref Analysis

Chijin Zhou1, Quan Zhang1, Mingzhe Wang1, 

Lihua Guo1, Jie Liang1, Zhe Liu2, Mathias Payer3, Yu Jiang1

1Tsinghua University, Beijing, China
2NUAA, Nanjing, China
3EPFL, Lausanne, Switzerland



Browser Fuzzing: A Decade of Research

2011

cross_fuzz

Random Fuzz Syntax-Aware Context-Aware Semantics-Aware

2015

Dharma

2017

Domato

2020

FreeDom

2021

Favocado

Goal of fuzzers: Generate html files that 

explore browser states and, with luck, 

trigger memory corruptions.User Browser Page

<html>
<style>

…
</style>
<script>

…
var el = doc.getElementById("..");
el.setAttribute("..", "..");
…

</script>
<body>

…
</body>
</html>



Browser APIs: Manipulating Browser State Transitions



Browser APIs: Manipulating Browser State Transitions

How to explore deep 
states of browsers?

Generate highly 
dependent API 

invocations.

API invocations Browser’s backend logic 

el.appendChild(img)

el.style.visibility = "hidden"

img.height = 10

…el

img

update the rendering tree 

recalculate the layouts and 
geometries of all elements

…
el

img

inform others of style changes 
repaint relevant elements

…
el

img

recalculate the layouts and 
geometries of all elements



Type Relation v.s. Memory Relation

void SVGSVGElement::setCurrentTime(float)

void SVGSVGElement::setCurrentScale(float)

Would the two APIs 
interact with each other?

From type relation view:

Yes, they would. Because they belong to the same 
element object and accept identical input types.

From memory relation view:

No, they would not. Because they do not access 
any common memory locations when handling 
their backend logic.



Type Relation v.s. Memory Relation

void SVGSVGElement::setCurrentTime(float)

void SVGSVGElement::setCurrentScale(float)

Would the two APIs 
interact with each other?

From type relation view:

Yes, they would. Because they belong to the same 
element object and accept identical input types.

From memory relation view:

No, they would not. Because they do not access 
any common memory locations when handling 
their backend logic.

Because putting two memory-irrelevant APIs into a 

test case will not trigger any interesting behaviors.

Why is the memory relation important?



Motivating Example

Observation: Memory mod-ref relations are implicitly present in API combinations 



Minerva: A New Solution for Browser Fuzzing

• Insight: Fuzzing guided by memory mod-ref relations of APIs

• A two-stage design:

1. Analyze the mod-ref relations through dynamic traces during preparation

2. Select highly relevant APIs based on the relations during fuzzing



Minerva: A New Solution for Browser Fuzzing

• Insight: Fuzzing guided by memory mod-ref relations of APIs

• A two-stage design:

1. Analyze the mod-ref relations through dynamic traces during preparation

2. Select highly relevant APIs based on the relations during fuzzing



Design (1/2): Dynamic Mod-Ref Analysis

Efficient

• Only focus on memory locations 
commonly visited by multiple APIs

• Analyze dataflow based on Andersen’s
pointer analysis

Sound

• Every relation has a concrete proof 
• Unlikely to over-approximate relations 

due to dynamic analysis



Design (2/2): Guided Input Generation

API Invocation 1

API Invocation 2

API Invocation n

…

Next selected API

Mod-Ref 
Relations

API x API y API z …

Relation-Guided

• Weighted selection for the next generated 
API invocation

Context-Aware

• Maintain context of DOM objects (reusing 
Domato code)

Semantics-Aware

• API declarations are extracted from code 
base of browsers

• Generate inputs following type-correctness



Evaluation (1/3): Comparison to Existing Fuzzers

19.63% ~ 229.62% more coverage

39.18% ~ 68.67% more compactness

More unique bugs



Evaluation (2/3): Effectiveness of Redundancy Reduction

API mod-ref relations are helpful to reduce redundancy



Evaluation (3/3): Discovering Unknown Browser Bug

35 new bugs:

• 26 have been confirmed; 

• 20 have been fixed;

• 5 new CVEs.



Summary

Goal: generate dependent API invocations Motivation: implicit relations are overlooked

Method: fuzzing guided by mod-ref relations Evaluation: more coverage, more bugs

Minerva: https://github.com/ChijinZ/Minerva

https://github.com/ChijinZ/Minerva

