Zeror: Speed Up Fuzzing with Coverage-
sensitive Tracing and Scheduling

Chijin Zhou!, Mingzhe Wang!, Jie Liang !,
Zhe Liu?, Yu Jiang !

ISchool of Software, Tsinghua University, Beijing, China
2Computer Science and Technology, NUAA, Nanjing, China

. 1952
g
4 '

U A

Fuzzing is popular

* Fuzzing 1s widely used for software vulnerability
* Project Springtield B Microsoft

* OSS-Fuzz Google
* Has found more than 16,000 bugs

* Some fuzzed projects

?SQLite G chrome % FFmpeg

OpenSSL ® TensorFlow " n d ¢

=i
l'l

dand>dX0Id

Y Firefox

General Workflow of Coverage-guided Fuzzing

[¥ REPORT - F
= 5 1
v =
initial

source code fuzzing
seeds

report
Fuzzer | ll
A
% feedback S 1 .es
| V=
2 O

coverage seeds
tracer generator

Tfeedback input
1
Target Process

binary

instrumentation

Runtime of Coverage-guided Fuzzing

Take American Fuzzy Lop (AFL) as example, the fuzzer’s
runtime consists of two parts:

Fuzzer’s Internal Logic

Coverage Tracin&

|

child process
establishment

I

seed selection
and mutation

I

coverage
comparison

|oes

|

Coverage
tracer

J

Limitation of Coverage-guided Fuzzing

Observation: tracing coverage is costly

1.5%

1.0

0.8

AFL spends an average of 71.85%
and up to 98.5% of its runtime to
trace coverage

0.6

0.4

0.2
mmm Time spent on AFL internal logic

= Time spent on coverage tracing
I:'.G |

Figure 3: Percentage of internal logic execution time and
edge level coverage tracing time in AFL.

Limitation of Coverage-guided Fuzzing

Observation: tracing coverage 1s costly

Fuzzer’s Internal Logic Coverage Tracing
[child process J [seed selection J [coverage J oo [Coverage}
establishment and mutation comparison tracer

Average Cost: 28.15% 71.85%

Focus of This Paper

Target: boost fuzzing speed while preserve fine-grained
coverage collection

Fuzzer’s Internal Logic Coverage Tracing
[child process J [seed selection J [coverage J oo [Coverage}
establishment and mutation comparison tracer

Average Cost: 28.15% 71.85%

Main 1dea:

Our Solution: Zeror

Switching between diversely-instrumented binaries

fuzz
Fuzzer

Target] switch

zero-overhead instrumented binary

<

Process J

fully instrumented binary

Dy

Our Solution: Zeror

Main 1dea:
Switching between diversely-instrumented binaries.

Approaches:

* A self-modifying tracing mechanism to provide a zero-overhead
instrumentation for coverage collection

* A real-time scheduling mechanism to support adaptive switch
between the zero-overhead instrumented binary and the fully
instrumented binary for better vulnerability detection

Self-modifying Tracing

Key insight:
Instrument program in edge level, and dynamically remove visited
instrumentation points during fuzzing process

Problems:
(1) How to instrument program
(2) How to remove visited instrumentation points

Self-modifying Tracing

: void foo(int *a if (a) if (a
How to instrument program { () o
if (a) “a=10 *a=)
Solution: add dummy block to *a=0; / /
critical edge } return return

(a) code (b) basic-block level (c) edge level

How to remove visited instrumentation points

Self-modifying Tracing

Solution: self-modifying its instructions during fuzzing process

Compilation Stage
@ Construct CFG

L D

@ Generate binary file and

mmrd target addresses

® Execute t

P

Runtime Stage

@ Recover binary code

yinary and

inject breakpoints m when trigger interrupt

int foo(int a, int b) oo <. 1
{ False
if (a>Dh) .
return 1; if (a > b)
else if (a <b) True /|
return 2; Tree Rl
else Jr
return 3; Heax < 3
} e W

Address

0x2b1980
0x2b1981
0x2b1984
0x2b1989
0x2b198b
0x2b198d
0x2b1992
0x2b1994
0x2b1999
0x2b199a

Binariy Codes Assembly

55

4889e5

b8 01 00 00 00
3917

7f0c

b8 02 00 00 00
7c05

b8 03 00 00 00
5d

c3

push %rbp
mov %rsp,%rbp
mov $0x1,%eax
cmp %esi,%edi
jg 2b1999
mov $0x2,%eax
1 2b1999
mov $0x3,%eax
pop %rbp

ret q

Address

0x2b1980
0x2b1981
0x2b1984
0x2b1989
0x2b198b
0x2b198d
0x2b1992
0x2b1994
0x2b1999
0x2b199a

Binariy Codes Assembly

cc
4889e5

b8 01 00 00 00
397

7f0c

cc 02000000
Tc05

cc 03 0000 00
cc

c3

int3...

mov %rsp,%rbp
mov $0x1,%eax
cmp Y%esi,%edi
jg 2b1999
int3...

jl 2b1999
int3...

int3...

l'Etll

Address

0x2b1980
0x2b1981
0x2b1984
0x2b1989
0x2b198b
0x2b198d
0x2b1992
0x2b1994
0x2b1999
0x2b199a

Binariy Codes Assembly

48 89e5

b8 01 00 00 00
39f7

7f0c

cc02 00 0000
7c05

cc 03 00 0000
cc

c3

mov Y%rsp,%rbp
mov $0x1,%eax
cmp %esi,%edi
jg 2b1999
int3 ...

jl 2b1999

int3 ...

int3 ...

I'El'q

Binary-switching Scheduling

Key insight:
Estimate fuzzing efficiencies of diversely-instrumented binaries, and
switch to high-efficiency binary at set interval

Problem:
How to estimate fuzzing efficiencies

Binary-switching Scheduling

For a binary, the efficiency at time period t i1s defined as

I P the number of interesting seeds
4

e { T P time spent on fuzzing
A

the number of executions

average execution speed (constant)

Bina

For a binary, the effic

ry-switching Scheduling

iency at time period t is defined as

the number of interesting seeds

time spent on fuzzing

Iy

— the number of executions

average execution speed (constant)

Binary-switching Scheduling

Procedure:

1. Collect statistical data (1.e. the number of interesting seeds, the number of
executions and the time spent on fuzzing) of each binary

2. Use empirical Bayesian to estimate interesting rate 7

Calculate the efficiency of each binary

4. Choose high-efficiency binary as optimal target

(US)

Binary-switching Scheduling

Specially, to smooth time-varying observed data, we leverage exponential
smoothing to calculate the smoothed number of interesting seeds:

I/ i=1
Ii = - :
yl; + (1-y)i-1 i>1

1. Efficiency of Zeror

Evaluation

average execution time for each test case (yus)

number of covered branches

Froject AFL AFL+INSTRIM AFL+Untracer AFL+Zeror AFL AFL+INSTRIM AFL+Untracer AFL+Zeror
bor'mgssl 96.69 69.68 N/A 33.05 2661 2694 N/A 2549
c-ares 43.34 25.42 13.95 16.32 57 57 35 57
freetype2 44.68 25.17 25.13 20.33 8255 9268 7007 10059
guetzli 99.92 67.98 45.80 41.00 4757 4845 4748 4987
harfbuzz 149.82 30.36 66.06 55.73 8148 8048 7195 9168
json 145.82 100.03 64.33 98.39 1315 1333 1152 1346
lems 97.71 70.92 44.18 63.96 2115 2244 1436 2077
libarchive 193.44 112.50 112.90 112.72 1208 1119 1082 1618
libjpeg 1469.47 668.96 261.30 337.36 2364 2564 2399 2857
libpng 15.34 5.48 5.27 7.54 1092 1096 1029 1140
libssh 638.00 340.52 309.62 309.29 867 867 867 867
libxml2 268.07 135.05 N/A 88.13 4063 4318 N/A 4745
llvm-libexxabi 137.61 81.61 43.75 42.04 6488 6005 6000 7012
openssl-].{].lf 3418.66 1998.27 N/A 1948.43 4748 6745 N/A 7372
openssl-1.0.2d 161.09 02.48 N/A 63.23 1825 1828 N/A 1769
t}penssl-l.l.ﬂc 210.70 89.74 N/A 50.60 1712 1711 N/A 1658
openthread 145.51 01.17 64.80 85.16 3561 3537 3279 3591
pere2 199,12 102.21 53.86 49.11 6890 6888 6597 6890
pr0j4 23.22 14.24 3.47 7.86 2541 2584 2347 3886
rez 640.24 391.97 260.19 235.40 4608 4647 4533 4725
sqlite 221.18 160.84 136.01 141.40 1892 1997 1986 1972
vorbis 96.14 58.08 36.45 25.48 2035 2152 1817 2079
woff2 31.55 20.12 11.80 8.67 2119 2152 1453 2157
wpantund 1921.02 2019.62 1544.89 1789.23 7959 T892 7802 8781
Zeror improvement +159.80% +50.70% -0.46% +10.14% +6.82% +20.84%

1. Efficiency of Zeror

Evaluation

Table 3: Time to expose known bugs, co denotes the fuzzer
cannot expose the known bugs in 6 hours and the projects
whose bugs can not be triggered by any fuzzer are removed.

Project AFL AFL+INSTRIM AFL+Untracer @ AFL+Zeror
c-ares 8 26 842 8
guetzli 0o 00 16257 6001
json 5 5 5 5
lems 20679 00 11827 10953
llvm-libexxabi 788 2197 2347 709
openssl-1.0.1f 19 19 0o 21
openssl-1.0.2d | 8716 6877 00 6013
pcre2 822 1375 6095 439
rez 0o 0 00 8194
woff2 3565 1535 0o 3260

Evaluation

2. Scalability of Zeror

Table 4: Time to expose known bugs, and the projects whose
bugs cannot be triggered by them in 6 hours are removed.

Project

MOPT MOPT+Zeror

c-ares
json
llvm-libcxxabi
openssl-1.0.1f
openssl-1.0.2d
pcre2
woff2

8

5
1818

31
1633
1944
3767

8
5
761
21
1320
968
3196

Evaluation
3. Evaluation of Individual Components 00

Untracer
Zeror-

&£
[]
=

mmmmm

pcreg _
I _
proj4 g

|l I-
o m
i =
- =

o

* 1 3 . 74X faSter than Untrac T When (a) Average time taken for different methods to erase instrumen-
erasing instrumentation points o poimes Qomersbenen

i« N
vorhbis —

c-ares
lems

average time (p
o S @ S h
=T = =] g (= =
]
fraetype? l_
guetzli I_
harfouzz I_
json .—
|
|
]

libarchive

=
=
=
=
4
S

self-modifying tracing:

Ivm-libcxxabi
ope nthread

* helps fuzzer cover more branches
compared with Untracer l I
% m HEm —
s 8 : E’ :

(b) Relative covered branches improvement of Zeror- compared
with Untracer.

Figure 8: Comparison between Zeror- and Untracer.

Evaluation
3. Evaluation of Individual Components

binary-switching scheduling:

* help fuzzer cover more branches

2800 —— ZFaror aooo Zeror
o —_— Farnr- — Faror
2E00 500
E AFL s AFL
m
5 2400 BOOD

1

xi]

5 2200 /?75’

P

H

+ 2000

bT] /

£

S 1800 - .

= I

= 1600 /
G000

number of covered branches
-
o
[]
=

baUU

EF 2|'I 2|I-. 2 Z 2|‘| 2I'| Er. 2|I| EE“ 2|-|
time (=) time (s)
(a) libjpeg (b) harfbuzz

Figure 9: Branches covered over time with different configu-
rations. The x-axis is on a logarithmic scale.

Conclusion

We propose a novel speed-up fuzzing framework Zeror:

It 1s made up of two parts: (1) zero-overhead instrumentation (2) real-time
scheduling.

It helps fuzzers speed up fuzzing process, further increase covered branches
and discovered bugs.

It 1s easy to be complemented to other orthogonal fuzzing optimizations.

Thank You

If you have any questions, please send emails to
zc118(@mails.tsinghua.edu.com

	Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling
	Fuzzing is popular
	General Workflow of Coverage-guided Fuzzing
	Runtime of Coverage-guided Fuzzing
	Limitation of Coverage-guided Fuzzing
	Limitation of Coverage-guided Fuzzing
	Focus of This Paper
	Our Solution: Zeror
	Our Solution: Zeror
	 Self-modifying Tracing
	 Self-modifying Tracing
	 Self-modifying Tracing
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	If you have any questions, please send emails to�zcj18@mails.tsinghua.edu.com

