
Zeror: Speed Up Fuzzing with Coverage-
sensitive Tracing and Scheduling

Chijin Zhou1, Mingzhe Wang1, Jie Liang 1,
Zhe Liu2, Yu Jiang 1

1School of Software, Tsinghua University, Beijing, China
2Computer Science and Technology, NUAA, Nanjing, China

Fuzzing is popular

• Fuzzing is widely used for software vulnerability
• Project Springfield
• OSS-Fuzz

• Has found more than 16,000 bugs

• Some fuzzed projects

General Workflow of Coverage-guided Fuzzing

source code

instrumentation

fuzzing
report

seeds
generator

initial
seeds

Fuzzer

Target Process

input

feedback

binary

coverage
tracer

feedback

Runtime of Coverage-guided Fuzzing

child process
establishment

seed selection
and mutation

coverage
comparison

Coverage
tracer

Coverage TracingFuzzer’s Internal Logic

Take American Fuzzy Lop (AFL) as example, the fuzzer’s
runtime consists of two parts:

Limitation of Coverage-guided Fuzzing
Observation: tracing coverage is costly

AFL spends an average of 71.85%
and up to 98.5% of its runtime to
trace coverage

Limitation of Coverage-guided Fuzzing
Observation: tracing coverage is costly

child process
establishment

seed selection
and mutation

coverage
comparison

Coverage
tracer

Coverage TracingFuzzer’s Internal Logic

Average Cost: 71.85%28.15%

Focus of This Paper

Target: boost fuzzing speed while preserve fine-grained
coverage collection

child process
establishment

seed selection
and mutation

coverage
comparison

Coverage
tracer

Coverage TracingFuzzer’s Internal Logic

Average Cost: 71.85%28.15%

Our Solution: Zeror
Main idea:
Switching between diversely-instrumented binaries

Fuzzer Target
Process

zero-overhead instrumented binary

fully instrumented binary

fuzz switch

Our Solution: Zeror
Main idea:
Switching between diversely-instrumented binaries.

Approaches:
• A self-modifying tracing mechanism to provide a zero-overhead

instrumentation for coverage collection
• A real-time scheduling mechanism to support adaptive switch

between the zero-overhead instrumented binary and the fully
instrumented binary for better vulnerability detection

Self-modifying Tracing
Key insight:
Instrument program in edge level, and dynamically remove visited
instrumentation points during fuzzing process

Problems:
(1) How to instrument program
(2) How to remove visited instrumentation points

Self-modifying Tracing

How to instrument program

Solution: add dummy block to
critical edge

Self-modifying Tracing

How to remove visited instrumentation points

Solution: self-modifying its instructions during fuzzing process

Binary-switching Scheduling
Key insight:
Estimate fuzzing efficiencies of diversely-instrumented binaries, and
switch to high-efficiency binary at set interval

Problem:
How to estimate fuzzing efficiencies

Binary-switching Scheduling

For a binary, the efficiency at time period 𝑡𝑡 is defined as

the number of interesting seeds

time spent on fuzzing

the number of executions

average execution speed (constant)

Binary-switching Scheduling

For a binary, the efficiency at time period 𝑡𝑡 is defined as

the number of interesting seeds

time spent on fuzzing

the number of executions

average execution speed (constant)

Binary-switching Scheduling

Procedure:
1. Collect statistical data (i.e. the number of interesting seeds, the number of

executions and the time spent on fuzzing) of each binary
2. Use empirical Bayesian to estimate interesting rate
3. Calculate the efficiency of each binary
4. Choose high-efficiency binary as optimal target

Binary-switching Scheduling

Specially, to smooth time-varying observed data, we leverage exponential
smoothing to calculate the smoothed number of interesting seeds:

Evaluation
1. Efficiency of Zeror

1. Efficiency of Zeror
Evaluation

Evaluation
2. Scalability of Zeror

Evaluation
3. Evaluation of Individual Components

self-modifying tracing:
• 13.74x faster than Untracer when

erasing instrumentation points
• helps fuzzer cover more branches

compared with Untracer

Evaluation
3. Evaluation of Individual Components

binary-switching scheduling:
• help fuzzer cover more branches

Conclusion

We propose a novel speed-up fuzzing framework Zeror:

It is made up of two parts: (1) zero-overhead instrumentation (2) real-time
scheduling.

It helps fuzzers speed up fuzzing process, further increase covered branches
and discovered bugs.

It is easy to be complemented to other orthogonal fuzzing optimizations.

Thank You

If you have any questions, please send emails to
zcj18@mails.tsinghua.edu.com

	Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling
	Fuzzing is popular
	General Workflow of Coverage-guided Fuzzing
	Runtime of Coverage-guided Fuzzing
	Limitation of Coverage-guided Fuzzing
	Limitation of Coverage-guided Fuzzing
	Focus of This Paper
	Our Solution: Zeror
	Our Solution: Zeror
	 Self-modifying Tracing
	 Self-modifying Tracing
	 Self-modifying Tracing
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	 Binary-switching Scheduling
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	If you have any questions, please send emails to�zcj18@mails.tsinghua.edu.com

